Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE.
نویسندگان
چکیده
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to bind intracellular Ni(II) for transfer to urease apoprotein. While native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni, the Ni-binding sites associated with urease activation are internal to the protein as shown by studies involving truncated H144UreE [Brayman and Hausinger (1996) J. Bacteriol. 178, 5410-5416]. Nine potential Ni-binding residues (five His, two Cys, one Asp, and one Tyr) within H144UreE were independently substituted by mutagenesis to determine their roles in metal binding and urease activation. In vivo effects of these substitutions on urease activity were measured in Escherichia coli strains containing the K. aerogenes urease gene cluster with the mutated ureE genes. Several mutational changes led to reductions in specific activity, with substitution of His96 producing urease activity below the level obtained from a ureE deletion mutant. The metal-binding properties of purified variant UreE proteins were characterized by a combination of equilibrium dialysis and UV/visible, EPR, and hyperfine-shifted 1H NMR spectroscopic methods. Ni binding was unaffected for most H144UreE variants, but mutant proteins substituted at His110 or His112 exhibited greatly reduced affinity for Ni and bound one, rather than two, metal ions per dimer. Cys79 was identified as the Cu ligand responsible for the previously observed charge-transfer transition at 370 nm, and His112 also was shown to be associated with this chromophoric site. NMR spectroscopy provided clear evidence that His96 and His110 serve as ligands to Ni or Co. The results from these and other studies, in combination with prior spectroscopic findings for metal-substituted UreE [Colpas et al. (1998) J. Biol. Inorg. Chem. 3, 150-160], allow us to propose that the homodimeric protein possesses two nonidentical metal-binding sites, each symmetrically located at the dimer interface. The first equivalent of added Ni or Co binds via His96 and His112 residues from each subunit of the dimer, and two other N or O donors. Asp111 either functions as a ligand or may affect this site by secondary interactions. The second equivalent of Ni or Co binds via the symmetric pair of His110 residues as well as four other N or O donors. In contrast, the first equivalent of Cu binds via the His110 pair and two other N/O donors, while the second equivalent of Cu binds via the His112 pair and at least one Cys79 residue. UreE sequence comparisons among urease-containing microorganisms reveal that residues His96 and Asp111, associated with the first site of Ni binding, are highly conserved, while the other targeted residues are missing in many cases. Our data are most compatible with one Ni-binding site per dimer being critical for UreE's function as a metallochaperone.
منابع مشابه
Purification and properties of the Klebsiella aerogenes UreE metal-binding domain, a functional metallochaperone of urease.
Klebsiella aerogenes UreE, a metallochaperone that delivers nickel ions during urease activation, consists of distinct "peptide-binding" and "metal-binding" domains and a His-rich C terminus. Deletion analyses revealed that the metal-binding domain alone is sufficient to facilitate urease activation. This domain was purified and shown to exhibit metal-binding properties similar to those of UreE...
متن کاملPurification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus.
Klebsiella aerogenes UreE, one of four accessory proteins involved in urease metallocenter assembly, contains a histidine-rich C terminus (10 of the last 15 residues) that is likely to participate in metal ion coordination by this nickel-binding protein. To study the function of the histidine-rich region in urease activation, ureE in the urease gene cluster was mutated to result in synthesis of...
متن کاملMutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of Klebsiella aerogenes Urease.
Nickel-containing urease from Klebsiella aerogenes requires four accessory proteins for proper active site metalation. The metallochaperone UreE delivers nickel to UreG, a GTPase that forms a UreD/UreF/UreG complex, which binds to urease apoprotein via UreD. Prior in silico analysis of the homologous, structurally characterized UreH/UreF/UreG complex from Helicobacter pylori identified a water ...
متن کاملCharacterization of UreG, identification of a UreD-UreF-UreG complex, and evidence suggesting that a nucleotide-binding site in UreG is required for in vivo metallocenter assembly of Klebsiella aerogenes urease.
In vivo urease metallocenter assembly in Klebsiella aerogenes requires the presence of several accessory proteins (UreD, UreF, and UreG) and is further facilitated by UreE. In this study, UreG was isolated and shown to be a monomer with an Mr of 21,814 +/- 20 based on gel filtration chromatography and mass spectrometric results. Although it contains a P-loop motif typically found in nucleotide-...
متن کاملStructural basis for Ni(2+) transport and assembly of the urease active site by the metallochaperone UreE from Bacillus pasteurii.
Bacillus pasteurii UreE (BpUreE) is a putative chaperone assisting the insertion of Ni(2+) ions in the active site of urease. The x-ray structure of the protein has been determined for two crystal forms, at 1.7 and 1.85 A resolution, using SIRAS phases derived from a Hg(2+)-derivative. BpUreE is composed of distinct N- and C-terminal domains, connected by a short flexible linker. The structure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 13 شماره
صفحات -
تاریخ انتشار 1999